METRIC AND TOPOLOGICAL SPACES: EXAM 2021/22 ## A. V. KISELEV **Problem 1** (15%). For all $x, y \in \mathcal{X}$ with a metric d put $\varrho(x, y) = d(x, y)/(1 + d(x, y))$ by definition. Prove that the function $\varrho \colon \mathcal{X} \times \mathcal{X} \to [0, 1)$ is another metric on \mathcal{X} . **Problem 2** (15%). Let a continuous map $f: \mathcal{X} \to \mathcal{Y}$ be a bijection of metric spaces; suppose \mathcal{X} is compact. Prove that the inverse f^{-1} of bijection f is also continuous. (Hint: \mathcal{Y} is Hausdorff.) **Problem 3** (15+10%). Prove a relation between boundaries: $\partial(A \cup B) \subseteq \partial A \cup \partial B$, here $A, B \subseteq \mathcal{X}$. • Give an example of indexed collection of sets such that $Y := \partial(\bigcup_{i \in I} A_i) \nsubseteq \bigcup_{i \in I} \partial A_i =: Z$ but the intersection $Y \cap Z = \emptyset$. **Problem 4** (15%). Let \mathcal{X} be a space such that every continuous function $f: \mathcal{X} \to \mathbb{E}^1$ has the following property: if a < c < b, f(x) = a, and f(y) = b, then there exists $z \in \mathcal{X}$ such that f(z) = c. Prove \mathcal{X} is connected. **Problem 5** (15%). Prove that on the set $[0,1] \subset \mathbb{R}$ there is no Hausdorff topology \mathcal{T}_1 which is strictly coarser (\subsetneq) than the Euclidean one, \mathcal{T}_2 . **Problem 6** (15%). Solve for x(s) the integral equation, $$x(s) = \frac{1}{2} \int_0^1 s \cdot t \, x(t) \, \mathrm{d}t + \frac{5}{6} s,$$ by consecutive approximations starting from $x_0(s) = 0$. (In the end, verify by direct substitution that the function x(s) which you have found satisfies the equation.)